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Abstract

Realistic human skin rendering has been a long-
standing challenge in computer graphics, especially
biological-based skin rendering has received more at-
tention in recent years, since it provides a more real-
istic skin rendering appearance and a more intuitive
way to adjust skin style. In this work, we present
a novel heterogeneous biophysically-based volume ren-
dering method for human skin that improves the realism
of skin appearance while easily simulating various types
of skin effects even skin diseases by modifying the bio-
logical coefficients textures. Specifically, we introduce a
two-layer skin representation by mesh deformation that
explicitly models the epidermis and dermis with hetero-
geneous volumetric medium layers that contain the cor-
responding spatially-varying melanin and hemoglobin,
respectively. Further, to better facilitate skin acquisi-
tion, we introduce a learning-based framework that au-
tomatically estimates spatially-varying biological coeffi-
cients from an albedo texture, enabling biophysically-
based and intuitive editing such as tanning, pathological
vitiligo, freckle, etc. We illustrate the effects of multi-
ple skin editing applications, and demonstrate superior
quality to commonly used random walk skin render-
ing method with more convincing skin details regarding
subsurface scattering.

Keywords: skin model, rendering, ray tracing, bio-
physics

1. Introduction

Human skin typically exhibits fine-level, complex and
translucent appearance with an extreme amount of details
due to its biophysical nature and structural variations across
the local bounding surface and volumetric, layered medium
underneath it. A realistic biophysically skin model is thus
required to faithfully reproduce these color, freckles, pim-
ples, wrinkles, veins, pores, and scars with physically-based
light transport simulation, as human observers are sensitive
to such appearance details of human skin and (in particu-
lar) faces. In general, such skin tone and skin details are
spatially-varying and heterogeneous, imposing difficulties
in accurately modeling, rendering, and acquisition of skin
appearance. As a result, it remains an important topic and
long-standing challenge to generate photorealistic and con-
vincing skin rendering in computer graphics.

Classical BSSRDF-based methods mainly focus on ef-
ficiently simulating the translucency of subsurface scatter-
ing either through extensive precomputation or approxima-
tion. Traditional skin models for one-layer BSSRDF-based
shading [18, 14] leveraging diffusion approximation often
tend to yield suboptimal quality (e.g., blurring of high-
frequency details) due to its oversimplified assumptions.
Multi-layered skin models [7, 9, 6] for subsurface scatter-
ing light transport simulation, on the other hand, are gen-
erally more reasonable to represent skin structure, but also
suffers from the same oversimplified assumptions problem
as single layer model. Different from these diffusion-based
methods, random walk method[38] is now more commonly
used in the film industry, which is a more directly simulated,
physically correct, ray tracing approach to render skin ap-
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pearance. However, the essence of this method is to use ho-
mogeneous volume path tracing to simulate the skin color,
which lacks biological meaning, making it impossible to
easily edit the skin appearance from a biological point of
view.

To address the aforementioned challenges, we tackle
this problem from the biophysical perspective and propose
a novel biophysically-based, heterogeneous human skin
model readily deployable in a GPU-based volumetric path
tracer. Unlike previous layered skin models that approxi-
mate the translucent effects from diffusion-based BSSRDF
or random walk methods that abandon the skin model and
directly fit the color values, we explicitly model the two
layers containing heterogeneous medium derived from bio-
logical mechanisms, representing spatially-varying melanin
and hemoglobin in the corresponding epidermis and der-
mis layers, respectively. This enables intuitive and bio-
logical manipulation of the skin appearance, such as oxy-
genated blood, tanning, flushing, and simulated patholog-
ical vitiligo while maintaining the realism of the skin ap-
pearance. We further propose a learning-based framework
to estimate these biophysical skin properties from a single
captured albedo map, enabling automatic capturing of hu-
man skin appearance to facilitate acquisition.

Concretely, our high-level contributions include:

• A biophysically-based and heterogeneous human skin
model with layers that explicitly represents spatially-
varying melanin and hemoglobin distributions in
medium with textures for realistic volumetric skin ren-
dering.

• A learning-based framework that automatically esti-
mates the biophysical parameters from a single cap-
tured albedo texture.

• Demonstrations like skin appearance editing, skin ag-
ing, and faithful tattoo, verifying the potential usage of
the biophysically-based skin model.

• GPU-accelerated open source codes for biophysically-
based skin rendering.

We take a step forward to the more convincing and realis-
tic modeling of human skin from the biophysical viewpoint.
Through a number of experiments and ablation studies, we
demonstrate that our approach is robust to reproducing skin
appearance details with high fidelity, as well as faithful
biophysically-based editing of skin appearance. We com-
pare our method with random walk method which demon-
strate the superiority of heterogeneous skin modelling. Our
code and data will be made publicly available.

2. Related Work

Human skin shading has always attracted much atten-
tion in computer graphics. Here, we focus on prior biology-

based skin rendering models and methods that are most rel-
evant to our proposed method. We refer to the book on skin
shading models and rendering [2] for a more comprehensive
survey.

2.1. Biophysically-based Models

Donner and Jensen [7] proposed a diffusion-based spec-
tral BSSRDF for shading skin leveraging biological coeffi-
cients, which can physiologically control skin color. They
decomposed the skin into two layers: epidermis and der-
mis, and also analyzed the concentration of melanin and
hemoglobin in the corresponding layer. Subsequently, Don-
ner et al. [9] proposed to use three 2D textures to represent
spatially-varying biological coefficients: a melanin texture,
a hemoglobin texture, and an inter-layer absorption texture.
Different from Donner and Jensen [7], they also consider
small amounts of β-carotene and hemoglobin in the epi-
dermis, which makes their model closer to the real skin
structure. However, the infinitesimally thin absorbing layer
between the epidermis and dermis is not biologically cor-
rect, and additional physical equipment is required to cap-
ture these biological parameters. Gitlina et al. [12] also
present a method related to skin rendering, while their work
mainly focuses on spectral skin reflectance measurement
and reconstruction. Their shading model refers to Don-
ner and Jensen [7]. Similar to our work, Krishnaswamy
and Baranoski [2] proposed a biophysically-based spec-
tral model for skin, and rendered it with a volume path
tracer. Their BioSpec model accounts for all components
of light propagation in skin tissues and represents skin as a
five-layer model, which guarantees the biological correct-
ness of the model. Nevertheless, compared to our method,
they only considered the homogeneous layers and cannot
generate multicolored results. Further, its complex skin
structure and overcomplicated biological coefficients are
less artist-friendly for parameter manipulation or appear-
ance editing. Jimenez et al. [20] extended static skin render-
ing to animation. They utilized specific hardware to obtain
the melanin and hemoglobin content of the skin, and ana-
lyzed the changes in the distribution of these two pigments
under different expressions. Similar to Jimenez, Iglesias
et al. [15] analyzed changes in biological and optical pa-
rameters of skin at different ages and genders to simulate
skin appearance of different ages. These two methods can-
not recover biological parameters from a single albedo, also
rendering with diffusion-based BSSRDF models, which is
less practical and suboptimal quality. Recently, Aliaga et
al. [1] proposed a method to recover biophysical skin prop-
erties from captured RGB albedo, which is similar in part
to our method. However, they require captured high-quality
albedo as input while our approach accept low-quality hand-
drawn albedo. At the same time, they did not leverage the
generated biophysical parameter textures for rendering, but



restore them to a new albedo and using Blender’s random
walk algorithm as the final renderer. This rendering method
is not integrated with the skin biophysical model. While
our approach explicitly models the biophysical layers of the
skin and utilizing heterogeneous volume path tracing for
rendering. Meanwhile, our method explicitly changes the
biological parameters instead of restoring the albedo image
through the neural network, which circumventing the ro-
bustness problem of the neural network.

2.2. Rendering methods

No matter what kind of skin biophysical model, a ren-
dering method is the basis to generate the final result.
The most classic ones are diffusion-based [32] methods,
which approximate the solution for light transport equa-
tion in highly scattering medium. These methods account
for subsurface scattering not only in skin but also in many
kinds of translucent materials such as wax, marble, and so
on. These diffusion-based methods are general methods so
we briefly introduced here. A big breakthrough was in-
troduced by Jensen et al. [18] who first use the diffusion-
based dipole model to represent highly scattering medium.
They improved the performance of dipole BSSRDF later in
[17]. Donner and Jensen [6] further introduced a multi-layer
model for simulating light scattering using multiple dipoles.
Their method works in the frequency domain, which simpli-
fies the convolutions to a geometric series that speed up the
rendering. This method is used by most biophysical skin
models. Donner and Jensen [8] then proposed a method
that combines photo mapping [31] with a diffusion model
that can simulate the effect of internal occluding objects
in transparent materials. In order to break the assumption
that the material surface is flat and semi-infinite, they intro-
duced a new quadpole diffusion approximation that mod-
els diffusion at right-angled edges. Classic diffusion may
cause errors when simulating the participating medium, and
later BSSRDF-based models improved upon it via modi-
fied diffusion solutions [14]. Vicini et al. [35] presented
a shape-adaptive subsurface scattering model using neu-
ral networks, enabling more realistic subsurface scattering
compared to diffusion-based methods. Their method gen-
erates a sample on the surface from a reference distribution
produced by a volumetric path tracer, along with the frac-
tion of incident light that eventually leaves the surface. For
diffusion-based methods, the flat and semi-infinite medium
assumption leads to errors when rendering curved objects,
such as the ears and nose for skin rendering. In contrast,
our volumetric approach does not suffer from these limita-
tions and is capable of producing more physically plausible
results. Despite Vicini et al. [35] also lifted the BSSRDF
assumptions, the quality of their results heavily depends on
network predictions and the accuracy of local geometry ap-
proximated using a low-order polynomial, which can be less

robust to complex geometric models.
To overcome the shortcomings of diffusion-based BSS-

RDF, the brute-force random walk (path traced subsurface
scattering) methods [25, 38] are proposed. These two meth-
ods relax basically all assumptions and obtain more accu-
rate results than the classic diffusion-based methods. For
polychromatic rendering, random walk methods restore the
corresponding homogeneous parameter of each color for
homogeneous volume path tracing, which simulates a vari-
ety of colors. However, differs from heterogeneous volume
path tracing, these methods does not take into account the
influence between adjacent colors.

There are also some real-time BSSRDF-based mod-
els [22, 21, 19, 3, 13] that we will not discuss in details here,
as they typically use simplified models for performance at
the expense of downgraded quality and are less relevant to
our approach.

3. Method

3.1. Biophysically-based Human Skin Model

Figure 1. Illustration of our biophysical skin model and tex-
ture coordinate value calculation. Our model contains two het-
erogeneous skin layers, namely the epidermis layer (w/ melanin)
and the dermis layer (w/ hemoglobin), both containing spatially-
varying medium parameters, which produce changeable and com-
plex skin color. When computing texture coordinate value for a
specific particle C (melanin or hemoglobin) during volume path
tracing, we sample a ray direction and intersect the layer bound-
ary (C → A), then back trace the ray to intersect the other layer
boundary (C → B). Finally, we use the texture coordinate values
of point A,B and the segment length |AC|, |BC| to interpolate
the final texture coordinate value. On the right, we show a cross-
section of real skin (source from Wiki Commons [5]). Note the
distribution heterogeneity of melanin and hemoglobin within the
skin layers.

Realistic rendering of human skin is a challenging task
due to its subtle, translucent appearance with fine-level de-
tails from microgeometry and complex biological proper-
ties. Light paths in human skin are subsurface scattered as
in medium with a high optical depth, sometimes even with
hundreds of bounces. Numerous biological and medical
studies have analyzed light interaction within human skin
structure, outlining the biological characteristics of its main
components and how these components affect the scattering
and absorption of light. In this section, we first present our



biophysically-based human skin model that is built on top of
previous biological research. Then we introduce a learning-
based inference framework for biological skin properties
leveraging captured albedo texture (Section 3.2). We show
a summary of notations in Table 1.

Table 1. Summary of common notations used in the paper.
Symbol Description
λ Wavelength of light
σeu
a Absorption coefficient of eumelanin

σph
a Absorption coefficient of pheomelanin

σother
a Absorption coefficient of other physiological tissue

σepi
a Absorption coefficient of epidermis

σder
a Absorption coefficient of dermis

σs Scattering coefficients of epidermis
υ Volume fraction of the epidermis occupied by melanin
α The proportion of eumelanin in melanin
τ Volume fraction of the dermis occupied by hemoglobin
β The proportion of oxygenated hemoglobin in hemoglobin

It is a consensus in the biological community that hu-
man skin is a layered structure with various small-scale el-
ements, e.g., pigments and collagen. Although most bio-
logical and medical studies indicate that human skin model
has at least five layers, in practice we generally consider
only two layers that contribute most significantly to the skin
color and scattering properties[11] (i.e., dermis and epider-
mis). To represent the scattering and absorption properties
in human skin, we follow prior work and also build a two-
layer skin model with epidermis and dermis (see Fig. 1
for illustration). However, unlike previous BSSRDF-based
methods, we explicitly model the skin layers that contain
heterogeneous participating medium, and derive their scat-
tering and absorption coefficients from spatially-varying
melanin and hemoglobin for Monte Carlo volume path trac-
ing, which as we demonstrate later is capable of achieving
physically-accurate light interaction and convincing skin
appearance visually under various illumination. We will de-
scribe in detail how to formulate from biophysical proper-
ties the optical volume parameters of each skin layer for ab-
sorption and reduced scattering coefficients σa and σ′

s , re-
spectively. This enables us to edit skin appearance in a more
intuitive and biophysically-based manner, such as tanning
and pathological control. Because the absorption properties
of skin need to be considered separately in the two layers,
we discuss them one by one in the following paragraphs.

Firstly, we consider absorption in the epidermis.
Melanin is most responsible for absorption in the epider-
mis layer, and it is a mixture of two kinds of pigments,
the red-yellow pheomelanin and the brown-black eumelanin
which both control the intensity of skin color. In general,
the absorption coefficients of eumelanin and pheomelanin
are higher for shorter wavelengths and can be approximated
by simple power functions (functions from [29]):

σeu
a (λ) = 6.6× 1010 × λ−3.33 mm−1, (1)

σph
a (λ) = 2.9× 1014 × λ−4.75 mm−1, (2)

where σeu
a , σph

a are absorption coefficients of eumelanin
and pheomelanin, respectively. λ denote the wavelength in
nanometers. The absorption spectra of other components in
the epidermis can be approximated by (function from [34]):

σother
a (λ) = 0.0244 + 8.53e−(λ−154)/66.2 mm−1. (3)

Assuming that melanin and other tissues are uniformly dis-
tributed in the epidermis, the total absorption coefficient is
given by:

σepi
a (λ) = υ(ασeu

a (λ) + (1− α)σph
a (λ))

+ (1− υ)σother
a (λ),

(4)

where υ is the volume fraction of the epidermis occupied
by melanin that varies from 0.013 to 0.43. α is the propor-
tion of eumelanin in melanin, which varies from individual
to individual. Both eumelanin and pheomelanin are found
in most skin types, and some types are more likely to con-
tain higher amounts of eumelanin. Different studies report
different values of α, and no study has measured all kinds
of skins. So the value range of α is not strictly specified. In
this work, we set the value range to be within 0 and 1.

Secondly, we discuss the absorption in the dermis.
Hemoglobin has the largest contribution to the absorp-
tion coefficient, which is also made up of two types of
hemoglobin — oxygenated hemoglobin and deoxygenated
hemoglobin. These hemoglobins have slightly different ab-
sorption spectra. These absorption spectra cannot be fitted
with a simple equation, so we look up the molar extinction
coefficient for the corresponding wavelength directly from
[27]. Note that the conversion of molar extinction coeffi-
cient to absorption coefficient is given by:

σa(λ) =
(2.303)(e(λ))(x)

64, 500
, (5)

where σa(λ) is the absorption coefficients corresponding
to wavelength, e(λ) is the oxygenated hemoglobin or de-
oxygenated hemoglobin molar extinction coefficient for the
wavelength of interest, x is the concentration of hemoglobin
with unit g/liter, hemoglobin has a normal concentration of
150g/liter of blood, 64500 is the gram molecular weight of
hemoglobin.

Although bilirubin concentration in a normal skin is neg-
ligible, we also take into account it in the dermis. We take
the molar extinction coefficient of bilirubin for the corre-
sponding wavelength directly from [10]. Similarly, we as-
sume that hemoglobin and other tissues are uniformly dis-
tributed in the dermis and the absorption spectra of other
components in the dermis is the same as the epidermis.

Consequently, the total absorption coefficient is given



by:

σder
a (λ) = τ(βσoxy

a (λ) + (1− β)σdeoxy
a (λ) + σbili

a )

+ (1− τ)σother
a (λ),

(6)

where τ is the volume fraction of hemoglobin in the der-
mis roughly varies from 0.002 to 0.07. Nevertheless, this
value range changes due to location and skin type, and τ
is not strictly specified. β is the proportion of oxygenated
hemoglobin in hemoglobin. β is 0.9-0.95 in arteries and
more than 0.47 in veins. However, arteries and veins dis-
tribute distinctly in different skin locations, so we fix β to
be 0.75 according to [7].

Table 2. Our spectral wavelengths (nm) and biological absorption
and scattering coefficients (mm−1) corresponding to R,G,B chan-
nels.

Description R G B
Wavelength 700 546.1 435.8
Eumelanin Absorption 22.150 50.632 107.330
pheomelanin Absorption 8.875 28.864 84.291
Oxy-hemoglobin Absorption 0.1553 26.704 71.123
Deoxy-hemoglobin Absorption 0.9608 27.453 292.932
Bilirubin Absorption 0.00026 0.00017 0.1268
Other Absorption 0.02663 0.0472 0.1452
Epidermis Scattering 4.6483 6.2014 8.0584
Dermis Scattering 2.9329 4.0421 5.4101

Thirdly, we consider the scattering coefficients in the
epidermis and dermis. Mie scattering caused by cell and
collagen fibrils happens in the epidermis. Furthermore, this
forward scattering is also wavelength dependent. In the
dermis, microstructures and smaller collagen fibers are re-
sponsible for Rayleigh scattering. Light can hardly travel
through the dermis, so we assume the dermis is semi-
infinitely thick. Mie and Rayleigh scattering can be approx-
imated by a function from [16]:

µ′
s = a

(
λ

500( nm)

)−b

, (7)

where a is 68.7 in epidermis and 45.3 in dermis and b is
1.161 in epidermis and 1.292 in dermis[30].The spectral
wavelength we select and corresponding biological absorp-
tion and scattering coefficients are all shown in Table 2. Our
RGB spectral wavelength refer to the CIE 1931 color space.
Spectrum of different biological parameters are plotted in
Fig. 2.

Finally, we consider the thickness of the epidermis,
which has significant effects on skin color. The thickness
of the epidermis is approximately 0.027-0.15mm. Thicker
epidermis makes melanin more influential and hemoglobin
less influential, which makes skin less ruddy. Epidermis
thickness varies with location and age. We fix the thickness
to 0.1mm when rendering heterogeneous layers (for most
results) since it is a general value sufficient for most adult
faces.

Figure 2. Spectral absorption and scattering coefficient plot
of oxy-hemoglobin, deoxy-hemoglobin, eumelanin, pheomelanin,
epidermis, dermis. As the order of magnitude of bilirubin absorp-
tion coefficient is too small, we do not illustrate it here.

3.2. Biophysical Skin Properties from Albedo

Utilizing Eqs. (4,6,7) and changing the thickness of
the epidermis, two homogeneous layers that are capable of
representing different skin types can be easily established.
Combined with the volume rendering technique, we can
render various skin colors. Nevertheless, spatially-variant
skin details cannot be expressed by the assembly of two dif-
ferent homogeneous layers. Therefore, we propose a novel
method to generate spatially-varying absorption and scat-
tering coefficients of each layer leveraging the albedo tex-
ture, which can reproduce the complex variations of skin
pigmentation.

The majority of changes in skin color, such as freckles
and red rashes, are due to the proportion of melanin and
hemoglobin in the epidermis and dermis. The main cause
of freckles is the deposition of melanin in the skin epi-
dermis because of endocrine disorders or external stimuli.
That is, the proportion of melanin in specific areas of the
epidermis increases. Red rash initiated by disease dilates
capillaries that increase hemoglobin content in the dermis,
which makes the skin area look reddish. The relationship of
melanin and hemoglobin to the medium parameters can be
calculated by the equations introduced before (Eqs. 4,6,7),
so by acquiring the unique biological parameters at each
point in the epidermis and dermis, the spatially-varying
medium parameters is able to calculate and the color varia-
tion of the skin can be simulated biologically and physically
correctly.

To obtain the spatially-varying biological coefficients
textures, we first build a lookup table (LUT) using a two-
layer homogeneous model with discrete biological parame-
ters introduced above. The LUT contains discrete skin col-
ors and corresponding biological coefficients. Using this
LUT, we look up the corresponding biological coefficients



for each pixel in the albedo texture, thus obtaining three
coefficient textures corresponding to the melanin fraction,
hemoglobin fraction, and melanin type blend. Utilizing
Eqs. (4,6,7), we generate two absorption textures of epi-
dermis and dermis representing the medium absorption in
these layers. Each channel of the absorption textures rep-
resents one of the three wavelengths of R,G and B. These
two textures only contain absorption coefficients because
scattering coefficients are fixed in each layer for every light
wavelength.

After obtaining absorption textures, we can calculate
the absorption coefficient of any point in the heteroge-
neous medium. We assume that each layer is a local-
homogeneous medium, which means a tiny cylinder cen-
tered on a point on the skin is a homogeneous medium. For
points in the skin, their texture coordinate value can be cal-
culated by the equation:

UVC =

(
l|AC|

l|AC|+|BC|

)
UVA +

(
l|BC|

l|AC|+|BC|

)
UVB , (8)

where l|AC| is the distance from the current medium point
to the intersection of the ray direction and the layer bound-
ary. Similarly l|BC| is the distance to the inverse ray di-
rection intersection of the layer’s boundary. l|AC|+|BC| is
the sum of l|AC| and l|BC|. UVA is the first intersection’s
texture coordinate value and UVB is the second intersec-
tion’s texture coordinate value (see Fig. 1). Eq. (8) repre-
sents a linear interpolation between these two texture coor-
dinate values. These layers are relatively thin compared to
the whole model and can be regarded as parallel planes lo-
cally, thus making our smooth interpolation of texture coor-
dinate values sufficient. We can obtain medium parameters
from the corresponding coefficient texture using this texture
coordinate value. Thus a two-layer heterogeneous medium
presented by two absorption textures can be rendered by a
Monte Carlo volume path tracer.

Although the LUT-based method is able to estimate bio-
logical skin properties from albedo texture, the brute-force
looking up process is relatively slow, and its results are not
smooth because of the discrete nature of the undersampled
LUT. Therefore, we then present a network structure PN-
Net combining a multi-layer perception (MLP) and a con-
volutional neural network (CNN) structure to regress albedo
values to biological coefficients. We found that some works
also use a similar approach for parameter mapping. Dif-
ferent from [12], all biological coefficients are predicted at
once by our PNNet, we do not require multiple networks to
predict biological parameters separately (see Fig. 3). The
input to PNNet is an albedo texture patch, and the output is
the biological coefficient texture patch. The detailed imple-
mentation will be introduced later. We show that our PNNet
can predict accurate and smooth results, please refer to the
Sec. 4 for details.

Figure 3. Illustration of our PNNet structure. Firstly, the albedo
patches are passed as input to a 7-layer MLP network, then the
outputs of MLP are concatenated with an albedo patch as input to
the U-NET. Finally, the U-NET predicts the corresponding biolog-
ical coefficients as texture maps. Note that we also train a decoder
to revert the albedo patch from biological coefficient textures but
it is not trained jointly. The structure of the decoder is the inverse
of the encoder except that the output is 3 channels.

4. Implementation Details

Volumetric path tracing. We implement a GPU-based vol-
ume path tracer. We use three channels of R,G,B to render
our result, which we found sufficient in reproducing most
skin appearance, despite that sampling multiple light wave-
lengths can produce more accurate results [7]. An efficient
wavelength-dependent estimator and a spectral tracking es-
timator [26] are both implemented in our renderer.

Next, we introduce our biological coefficients with typ-
ical values that calculating the medium parameters used
by our volume path tracer. Table 3 summarizes four co-
efficients of our model. Note that the “t” coefficient is
fixed to 0.001 when rendering heterogeneous layers. We
use Blender to resize the geometry model along normal ac-
cording to the thickness that guarantees an equidistant scal-
ing. The gap between the outer and inner models represents
the epidermis, while the inner model represents the der-
mis as we assume that the dermis is semi-infinitely thick.
Note that models should be water tight. When rendering
homogeneous layers, using Eqs.(4,6,7) directly gives the
medium parameters of two models for specific thicknesses.
When rendering heterogeneous layers, we use the LUT and
PNNnet to obtain spatially-vary medium parameters that
will be discussed later. Note that our typical values exceeds
the range mentioned above, thus a wider range of colors can
be represented, which enables our method to handle abnor-
mal skin albedos.

Table 3. Typical values of coefficients to our two-layer model.
We did not consider the hemoglobin content of the epidermis and
β−carotene content which are generally less than 5% in regular
skin because these pigments have little effect on skin color and
greatly increase the complexity of our method. The oil content on
skin surface is controlled by the specular roughness.

Parameter Description Typical range
υ Melanin fraction 0 - 1
α Melanin type blend 0 - 1
τ Hemoglobin fraction 0 - 1
t Thickness of epiderms 0.00027 - 0.0025



Lookup table. The settings of LUT are important for het-
erogeneous rendering since it will affect the medium pa-
rameter estimation. Our model for rendering LUT is a cube
with a side length of twenty centimeters as the outer model,
and we shrunk it along normal by 0.001 as the inner model
since the thickness is fixed to 0.001 while rendering het-
erogeneous layers. After the model is determined, we then
choose biological coefficients to obtain the medium param-
eters. We employ a relatively dense discretization for υ and
τ (101 bins) coefficients which have a noticeable effect on
skin color, while applying a coarse discretization for α (11
bins) to reduce the time to generate and look up the LUT
since its contribution is subtle to the overall skin appear-
ance. Next, we render the LUT using a classic volume path
tracer with 1024 samples per pixel and a max depth of 95.
Since skin is a highly-scattering material, setting the max
depth too low will result in a loss of energy. We only focus
on the result for the central part of the cube, so only the 2mm
square patch centered at the cube is rendered. The average
of pixel values in that patch is the final color corresponding
to the cube coefficients.

We implement a CPU parallel look-up method to gen-
erate three biological coefficient textures and compute two
absorption textures as a preprocessing operation before het-
erogeneous volume rendering; thus only texture coordinate
calculation is needed during rendering. It takes approxi-
mately ten minutes to process a 2K resolution texture with
a 112,211 data LUT using an Intel i7-7700 CPU.

PNNet training. We train a PNNet combining MLP
and CNN to recover smooth biological coefficients. The
MLP consists of 5 fully connected hidden layers and
the CNN is a classic U-NET structure [28] with 4 up-
sampling/downsampling layers. Albedo patches first pass
through MLP that is responsible for pixel-by-pixel predic-
tion of biological coefficients to generate three biological
coefficient vectors, which are reshaped into three textures
and used as input to CNN. CNN is responsible for smooth-
ing the results of MLP with the origin albedo texture and
outputting the final biological parameter textures. We found
that the predicted results using only MLP were not smooth
enough, and more accurate results can be obtained by fol-
lowing the MLP with a CNN smoother. We also tried
adding MLP decoder for joint training, but the results did
not improve. Our training dataset contains 13462 pairs
of patches generated by slicing albedo textures and corre-
sponding biological textures using LUT. The resolution of
each patch is 256*256. The resolution of albedo textures
is generally high, so choosing a relatively large patch can
contain more skin details.

We use the Adam optimizer [24], with a learning rate of
10−3 for MLP and 10−4 for CNN. The batch size is 128 of
100 epochs. Although more epochs result in better conver-
gence, we find that 100 epochs are good enough to provide

smooth and accurate predictions. The loss function is de-
fined as:

L(I, I′) = λ1L2 + λ2Lpercept, (9)

where L2 denotes the biological coefficients loss which
computes the L2 loss between the predicted biological co-
efficients and the ground truth. Lpercept denotes the VGG-16
perceptual loss [23]:

Lpercept(I, I
′) =

∑4
j=1 w

percept
j ∥Fj(I)− Fj(I

′)∥22, (10)

where F1, ..., F4 are the feature maps corresponding to the
output of layers of conv1 1, conv1 2, conv3 2 and conv4 2.
We also experimented with a variety of different losses in-
cluding SSIM loss, L1 loss, L2 loss, perceptual loss and
their combinations, however we got the best results using
L2 and perceptual loss.

To verify the accuracy of the generated biological tex-
tures, we also train a decoder to remap the biological tex-
tures back to albedo texture. The structure of the decoder
is simple, which is the reverse of MLP. The training data is
similar to the previous network, except that the biological
coefficient textures are generated by the trained PNNet.

5. Experiments and Results

5.1. Ablation Study

Figure 4. From top to bottom, we show error maps of biological
coefficient textures belong to an Asian skin type albedo predicted
by our CNN, MLP, and PNNet that combined both. Note that the
error of PNNet predictions is smaller than the other two networks.

Here we compare the biological coefficient textures pre-
dicted by our three networks of an Asian skin type (see Fig.
4). Each row shows the error map against the correspond-
ing LUT-based textures (ground truth). The PNNet result
presents the smallest error comparing the other two alterna-
tives, demonstrating the effectiveness of our network design
choice. Table 4 shows the average PSNR of our evaluation



Table 4. Quantitative comparisons of our evaluation dataset for different network structures. The PSNR, SSIM and LPIPS value of PNNet
is the best in all three biological coefficients.

Network ↑ PSNR ↑ SSIM[36] ↓ LPIPS[39]
Melanin Blend Hemoglobin Melanin Melanin Blend Hemoglobin Melanin Melanin Blend Hemoglobin Melanin

U-NET 28.509 40.292 45.133 0.720 0.886 0.968 0.365 0.252 0.189
MLP 32.010 46.599 57.316 0.725 0.913 0.986 0.280 0.139 0.112
PNNet 32.685 49.215 58.176 0.786 0.926 0.988 0.250 0.096 0.095

α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

Figure 5. Change in skin color as the melanin type blend α in-
creases from 0.1 to 1.0. The melanin fraction is fixed at 0.02, and
the hemoglobin fraction is fixed at 0.025. Thickness t is 0.002.
The higher the value of α, the darker the skin color. Note that α
doesn’t have that much effect on skin color. The rightmost picture
illustrates the rendering area of the head model.

dataset. PNNet achieved the best results across biological
coefficients consistently.

5.2. Results

In this section, we present our experiment results
from three aspects: color representation capability of
homogeneous layers with varying biological coefficients;
network-generated biological coefficients textures; ren-
dered spatially-varying skin color with heterogeneous lay-
ers.

Fig. 5 shows the effect of changing melanin type blend
coefficient α from 0.1 to 1. The rightmost picture indicates
the rendering area, same as in Fig. 6 and 7. High α values
present a higher ratio of eumelanin which gives darker skin
color. Certainly, the influence of α on skin color is more
subtle than υ and τ , since absorption coefficients are not
much different between eumelanin and pheomelanin, and
the lightly pigmented skin type has low amounts of total
melanin.

Figure 6. Change in skin color as the thickness t (in decimetre)
increases from 0.001 to 0.005. The thin epidermis layer gives a
reddish and pink appearance to the skin, while the thick epidermis
makes the skin looks dark and brown. The melanin fraction υ is
fixed at 0.025, the hemoglobin fraction is 0.02, and α is 0.5.

Then, in Fig. 6, we illustrate the effects of changing
thickness t from 0.001 to 0.005 from left to right. Although

the typical value of t ranges up to 0.0025, we break through
this limit, to more clearly show the effect of thickness, such
t values are not used in practical rendering. Low values of
thickness t generate reddish skin color, which hemoglobin
contributes significantly to skin color because more light
energy enters the dermis. As the thickness of the epidermis
increases, the light entering the dermis has less energy that
melanin dominates skin color. In practice, the epidermis is
not particularly thick, so the skin always shows reddish ex-
cept for the African skin type, where most light energy is
absorbed by melanin.

Fig. 7 shows results of changing melanin fraction υ and
hemoglobin fraction τ . From left to right, υ increases from
0.005 to 0.4, and from top to bottom, τ increases from 0.001
to 0.1. The Caucasian skin type is close to the left part of the
figure, while the result on the right is close to the African
skin type, which indicates the effect of melanin on the skin
color. The bottom part of the figure shows a more reddish
color to demonstrate the role of hemoglobin. However, the
redness of the skin is not obvious when the skin is darker, as
we analyzed before. We demonstrate that even with a fixed
epidermal thickness, our model can represent a wide variety
of skin types.

In Fig. 8, we show biological textures predicted by
our PNNet, taking albedo as input. These textures corre-
spond to the content of biological coefficients, and these bi-
ological coefficients will be used to compute the spatially-
varying absorption coefficients. Note that our PNNet only
takes approximately 3.5 seconds to predict three 2K resolu-
tion biological coefficient textures with an NVIDIA Tesla-
V100 GPU while LUT-based method takes approximately
10 minutes as mentioned above.

In Fig. 9, we compare textures of the decoder-generated
albedo to the origin albedo. The biological coefficients gen-
erated by PNNet can be well mapped to the original albedo
with the decoder, illustrating the accuracy of PNNet.

In Fig. 10, we show various parameter manipulation re-
sults to demonstrate the effectiveness of our explicit biolog-
ical editing approach. Thanks to explicit modeling and het-
erogeneous volume rendering, the plotted results naturally
represent changes in the corresponding biological parame-
ters.

Fig. 11 shows images generated by heterogeneous vol-
ume rendering leveraging spatially-varying absorption co-
efficients under different environment maps. The specu-
lar reflection is modeled with Torrance-Sparrow microfacet



Figure 7. Changing in skin color as melanin fraction υ increases from 0.005 to 0.4 from left to right and hemoglobin fraction τ increases
from 0.001 to 0.1 from top to bottom. The melanin type blend α is kept constant at 0.5. The thickness t is fixed at 0.002. Note that υ is
not sampled uniformly as υ increases, the skin darkens rapidly. Also, we do not consider specular reflections here and show results with
specular reflections later. As can be seen, our two-layer homogeneous model can represent a variety of kinds of skin.

Figure 8. From left to right, we show the origin albedo, melanin
fraction, hemoglobin fraction, and melanin type blend texture
maps. Difference map ×4 are shown in the bottom left corner
of each predicted texture. PNNet predictions contain rich details,
and the predicted values are basically in the typical range except
for the lips, which physiologically contain more hemoglobin.

BRDF [33], which has been proved to be practical for fit-
ting skin highlights [37]. Please zoom in to focus on skin
details.

Apart from classic skin rendering, our method can be
easily extended to render tattoo effects. In Fig. 12, we
show the result of an Asian skin type hand model and tat-
too editing on the arm, demonstrating the generality and
flexibility of our model. Although tattoos cannot be rep-

Figure 9. From left to right, we show the origin albedo texture
and decoder-generated albedo texture of two skin types and the
difference map ×4 in the bottom left corner of generated albedos.

resented by biological parameters directly, we can still sim-
ulate the changes in the dermis pigmentation caused by tat-
toos, which can be considered as a physiological change.
Note that the effect of subsurface scattering around the tat-
too is well reproduced. Another tattoo effect on the face is
shown in Fig. 13.

In Fig. 14, we demonstrate that our biological model
enables pathological editing with various disorder effects
caused by skin disease. Note that, no artist involvement is
required since this can be achieved by modifying biological



Figure 10. Biological parameter manipulation results under ambi-
ent light. Increased content of melanin or hemoglobin makes skin
appear darker or redder respectively, while the melanin type blend
α influence subtle to skin appearance because the spectra of eu-
melanin and pheomelanin are relatively similar.

Figure 11. Heterogeneous volume rendering results for Asian skin
type. The corresponding environment map is in the insight of each
result. The facial details of skin are well preserved with our model
under various illumination conditions with faithful specular high-
lights and subsurface scattering. Zoom in is recommended to ob-
serve skin details.

coefficients with our method. Please zoom in to focus on
pathological effect.

Figure 12. Rendering results of Asian skin type hand model. From
left to right, original hand, transmittance effect of back illuminated
and dragon tattoo on arm.

Figure 13. Another tattoo effect on the cheek.

Figure 14. Rendering results of pathology effects. We show the
birthmark, freckle and vitiligo effect on the cheek by modifying
biological coefficient textures without any artist involved.

Figure 15. Rendering results of changing thickness and model
details to simulate skin changes with age. We focus on eye corner
which produce visible wrinkles with age. All results share the
same albedo texture.

Fig. 15 illustrates the ability of our method to rep-
resent skin of different ages by changing the thickness
of epidermis (older skin type with thinner epidermis) and
model details. The ”Child” and ”Youth” results share the
same epidermis thickness and model, while we modify the
hemoglobin content of ”Child” algebraically to present rosy
skin effect.



Figure 16. Transmittance effect of the ear. From left to right,
we show the result of our method, followed by BSSRDF-based
method, homogeneous method and Disney BSDF with subsurface
method.

In Fig. 16, we show the transmittance effect at the
ear. From left to right, we show the rendering results
of our method, BSSRDF-based method [8], two-layer ho-
mogeneous method and Disney BSDF [4] with subsurface
method. Compared to BSSRDF-based and Disney method
that assumes semi-infinitely flat model which breaks in
curved parts such as the ear, our method guarantees a more
accurate transmitted intensity.

Figure 17. Comparison between random walk and our method
on rendering tattoo. The texture corresponding to the rendering
result is in the second line. Our method achieves photorealistic
tattoo rendering by generating a dermis absorption coefficient tex-
ture. Even compared with random walk with modified texture, our
method also has stronger subsurface scattering effect.

We also compare to widely used random walk method by
rendering tattoos on the cheek. Tattooing is the penetration
of black ink into the dermis, which presents cyan patterns
under the combined interaction of hemoglobin and other
pigments. As shown in Fig. 17, traditional random walk
method only revert the original albedo, while our method
realistically simulates the color presented by the ink in the
dermis. We also changed the color of the tattoo pattern to
cyan to render a relatively realistic tattoo effect using ran-
dom walk, however, the patterns still have distinct hard bor-
ders while our method has obvious subsurface scattering ef-
fect. Random walk only uses homogeneous rendering to fit
each albeo’s pixel color, but our approach explicitly model
the heterogeneous nature of the skin utilizing absorption

texture. Both results exclude the specular term for a fair
comparison. We use Blender to generate the result of ran-
dom walk.

6. Discussion and Limitations

Due to the absorption coefficients calculation of the in-
ternal points of the layers, our implementation requires
more intersection test and texture coordinates mapping than
classic volume path tracing, which slow down rendering.
As a result, we sample three light wavelength correspond-
ing to RGB in order to obtain convergent results within a
reasonable time. Compared to methods with a densely sam-
pled wavelength, our work may introduce extra errors. Fur-
ther, our biological two-layer model is unable to simulate
some specific skin effects such as carotenemia (caused by
β-carotene) since it cannot be modeled with hemoglobin
and melanin concentrations. In the future, the two-layer
model can consider more biological substances in the skin.
However, this will increase the complexity of the LUT and
the network can be more difficult to train.

7. Conclusion

Our work advances the realism of human skin model-
ing and rendering from the biophysical perspective. Un-
like previous BSSRDF-based and random walk methods,
we explicitly model the skin using layers of heterogeneous
medium, and derive their volumetric scattering parameters
from biological properties of spatially-varying melanin and
hemoglobin, enabling controllable and biophysically-based
appearance editing of human skin such as simulated patho-
logical skin condition. To facilitate appearance acquisition,
we further present a learning-based framework that auto-
matically infers such biophysical parameters from a single
albedo. Our model reproduces faithful and consistent skin
appearance across different lighting, skin type and colors.
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